Right choice is (b) –\(\frac{7}{2}\)
Explanation: Given that: \(\vec{a}=\hat{i}-\hat{j}+3\hat{k}, \,\vec{b}=5\hat{i}-2\hat{j}+\hat{k} \,and \,\vec{c}=\hat{i}-\hat{j}\)
Also given, \(\vec{a}+μ\vec{b}\) is perpendicular to \(\vec{c}\)
Therefore, \((\vec{a}+μ\vec{b}).\vec{c}=0\)
i.e. \((\hat{i}-\hat{j}+3\hat{k}+μ(5\hat{i}-2\hat{j}+\hat{k})).(\hat{i}-\hat{j})\)=0
\(((1+5μ) \,\hat{i}-(1+2μ) \,\hat{j}+(μ+3) \,\hat{k}).(\hat{i}-\hat{j})\)=0
1+5μ+1+2μ=0
μ=-\(\frac{7}{2}\).