The correct answer is (b) \(cos^{-1}\frac{43}{\sqrt{3382}}\)
Easy explanation: The direction ratios are 5, 3, 2 for L1 and 3, 4, 8 for L2
∴ the angle between the two lines is given by
cosθ=\(\frac{(a_1 a_2+b_1 b_2+c_1 c_2)}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a_2^2+b_2^2+c_2^2}}\)
=\(\frac{15+12+16}{\sqrt{5^2+3^2+2^2}.\sqrt{3^2+4^2+8^2}}\)
=\(\frac{43}{\sqrt{38}.\sqrt{89}}=\frac{43}{\sqrt{3382}}\)
θ=\(cos^{-1}\frac{43}{\sqrt{3382}}\).