Correct choice is (c) 4-2\(\sqrt{2}\)
To explain I would say: I=\(\int_{-1}^1 \frac{5x^4}{\sqrt{x^5+3}} dx\)
Let x^5+3=t
Differentiating w.r.t x, we get
5x^4 dx=dt
The new limits
when x=-1,t=2
when x=1,t=4
∴\(\int_{-1}^1 \frac{5x^4}{\sqrt{x^5+3}} dx=\int_2^4 \frac{dt}{\sqrt{t}}\)
=\([2\sqrt{t}]_2^4=2(\sqrt{4}-\sqrt{2})=4-2\sqrt{2}\)