The correct answer is (b) a^2 log (x + √( a^2 + x^2)) + c
To elaborate: The given form of equation can be written as,
dy/dx + 1/√(a^2 + x^2) * y = (√(a^2 + x^2) – x)/√(a^2 + x^2) ……(1)
We have, ∫1/√(a^2 + x^2)dx = log(x + √(a^2 + x^2))
Therefore, integrating factor is,
e^∫1/√(a^2 + x^2) = e^log(x + √(a^2 + x^2))
= x + √(a^2 + x^2)
Therefore, multiplying both sides of (1) by x + √(a^2 + x^2) we get,
x + √(a^2 + x^2dy/dx + (x + √(a^2 + x^2))/ √(a^2 + x^2)*y = (x + √(a^2 + x^2))(√(a^2 + x^2) – x)/√(a^2 + x^2)
or, d/dx[x + √(a^2 + x^2)*y] = (a^2 + x^2) ………..(2)
Integrating both sides of (2) we get,
(x + √(a^2 + x^2) * y = a^2∫dx/√(a^2 + x^2)
= a^2 log (x + √(a^2 + x^2)) + c