Right option is (c) \(\frac{7}{2} (x^2 logx-x)+C\)
To explain I would say: ∫ 7 logx.x dx=7∫ logx.x dx
Using ∫ u.v dx=u∫ v dx-∫ u'(∫ v dx) , we get
7∫ logx.x dx=7(logx ∫ x dx-(logx)’∫ x dx)
=\(7\left (\frac{x^2 logx}{2}-\frac{1}{x}.\frac{x^2}{2}\right)\)
=\(\frac{7}{2} (x^2 logx-x)+C\)