Right answer is (c) tanx (log(tanx)-1)+C
Easiest explanation: By using∫ u.v dx=u∫ v dx-∫ u'(∫ v dx), we get
∫ log(tanx) sec^2x dx=log(tanx) ∫ sec^2 xdx -∫ (logtanx)’∫ sec^2x dx
=tanx log(tanx)-\(\int \frac{1}{tanx} sec^2x.tanx \,dx\)
=tan xlog(tanx)-∫ sec^2x dx
=tan xlog(tanx)-tanx+C
=tanx (log(tanx)-1)+C