Correct answer is (b) 3x1y + 4y1x – 7x1y1 = 0
The explanation: Equation of the given hyperbola is, 3x^2 – 4y^2 = 12 ……….(1)
Differentiating both sides of (1) with respect to y we get,
3*2x(dy/dx) – 4*(2y) = 0
Or dx/dy = 4y/3x
Therefore, the equation of the normal to the hyperbola (1) at the point (x1, y1) on it is,
y – y1 = -[dx/dy](x1, y1) (x – x1) = -4y1/3x1(x – x1)
Or 3x1y + 4y1x – 7x1y1 = 0