Correct choice is (c) 1/v^2 – 1/u^2 = 4at
The explanation is: We have, t = ax^2 + bx + c ……….(1)
Differentiating both sides of (1) with respect to x we get,
dt/dx = d(ax^2 + bx + c)/dx = 2ax + b
Thus, v = velocity of the particle at time t
= dx/dt = 1/(dt/dx) = 1/(2ax + b) = (2ax + b)^-1 ……….(2)
Initially, when t = 0 and v = u, let x = x0; hence, from (1) we get,
ax0^2 + bx0 + c = 0
Or ax0^2 + bx0 = -c ……….(3)
And from (2) we get, u = 1/(2ax0 + b)
Thus, 1/v^2 – 1/u^2 = (2ax + b)^2 – (2ax0 + b)^2
= 4a^2x^2 + 4abx – 4a^2x0^2 – 4abx0
= 4a^2x^2 + 4abx – 4a(ax0^2 – bx0)
= 4a^2x^2 + 4abx – 4a(-c) [using (3)]
= 4a(ax^2 + bx + c)
Or 1/v^2 – 1/u^2 = 4at