The correct choice is (b) 2ρVr + ρVθcotθ + ρ\frac {∂(V_θ)}{∂θ} + Vθ\frac {∂(ρ)}{∂θ} = 0
To elaborate: The general continuity equation is given by
\frac {∂}{∂t} + ∇.(ρV) = 0.
Since the flow is assumbed to be steady, \frac {∂}{∂t} = 0.
For spherical coordinated of a cone, the del operator is expanded as
∇.(ρV) = \frac {1}{r{^2}} \frac {∂}{∂r}(r^2ρVr) + \frac {1}{r sinθ} \frac {∂}{∂θ} (ρVθsinθ) + \frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ} = 0
Solving the partial derivatives, we get
\frac {1}{r{^2}}\bigg [ r^2\frac {∂}{∂r}(ρVr) + ρVr\frac {∂(r^2)}{∂r} \bigg ] + \frac {1}{r sinθ} \bigg [ ρVθ\frac {∂}{∂θ}(sinθ ) + sinθ\frac {∂(ρV_θ)}{∂θ} \bigg ] + \frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ} = 0
This is equal to
\frac {1}{r{^2}}\bigg [ r^2\frac {∂}{∂r}(ρVr) + ρVr(2r) \bigg ] + \frac {1}{r sinθ} \bigg [ ρVθ(cosθ) + sinθ\frac {∂(ρV_θ)}{∂θ} \bigg ] + \frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ} = 0
Since the flow properties are constant along a ray, \frac {∂}{∂r}(ρVr) = 0 and \frac {∂(ρV_ϕ)}{∂ϕ} = 0
The equations becomes \frac {1}{r{^2}}[ρVr(2r)] + \frac {1}{r sinθ} \bigg [ ρVθ(cosθ) + sinθ \frac {∂(ρV_θ)}{∂θ} \bigg ] + 0
Multiplying the final equation with r: 2ρVr + ρVθcotθ + ρ\frac {∂(ρV_θ)}{∂θ} + Vθ\frac {∂(ρ)}{∂θ} = 0