The correct choice is (b) 2ρVr + ρVθcotθ + ρ\(\frac {∂(V_θ)}{∂θ}\) + Vθ\(\frac {∂(ρ)}{∂θ}\) = 0
To elaborate: The general continuity equation is given by
\(\frac {∂}{∂t}\) + ∇.(ρV) = 0.
Since the flow is assumbed to be steady, \(\frac {∂}{∂t}\) = 0.
For spherical coordinated of a cone, the del operator is expanded as
∇.(ρV) = \(\frac {1}{r{^2}} \frac {∂}{∂r}\)(r^2ρVr) + \(\frac {1}{r sinθ} \frac {∂}{∂θ}\) (ρVθsinθ) + \(\frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ}\) = 0
Solving the partial derivatives, we get
\(\frac {1}{r{^2}}\bigg [ \)r^2\(\frac {∂}{∂r}\)(ρVr) + ρVr\(\frac {∂(r^2)}{∂r} \bigg ] + \frac {1}{r sinθ} \bigg [ \)ρVθ\(\frac {∂}{∂θ}\)(sinθ ) + sinθ\(\frac {∂(ρV_θ)}{∂θ} \bigg ] + \frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ}\) = 0
This is equal to
\(\frac {1}{r{^2}}\bigg [ \)r^2\(\frac {∂}{∂r}\)(ρVr) + ρVr(2r)\( \bigg ] + \frac {1}{r sinθ} \bigg [ \)ρVθ(cosθ) + sinθ\(\frac {∂(ρV_θ)}{∂θ} \bigg ] + \frac {1}{r sinθ} \frac {∂(ρV_ϕ)}{∂ϕ}\) = 0
Since the flow properties are constant along a ray, \(\frac {∂}{∂r}\)(ρVr) = 0 and \( \frac {∂(ρV_ϕ)}{∂ϕ}\) = 0
The equations becomes \(\frac {1}{r{^2}}\)[ρVr(2r)] + \(\frac {1}{r sinθ} \bigg [ \)ρVθ(cosθ) + sinθ \(\frac {∂(ρV_θ)}{∂θ} \bigg ] \) + 0
Multiplying the final equation with r: 2ρVr + ρVθcotθ + ρ\(\frac {∂(ρV_θ)}{∂θ}\) + Vθ\(\frac {∂(ρ)}{∂θ}\) = 0