The correct option is (a) (1 + gm * (R1 || R2)) * Ri + (R1 || R2)
For explanation: We calculate the output impedance by shorting the two voltage sources to ground. Thereafter, as we apply a simple step input at the output node, i.e. the collector node, we’ll find that the total impedance at connected to the drain of M1 is nothing but (1 + gm * (R1 || R2)) * Ri + (R1 || R2) where gm is the transconductance of M1, R1 || R2 is the total resistance connected at the drain and Ri is the total resistance connected at the source. The output impedance would’ve been R1 || R2 if the current source was absent.