Correct answer is (c) 82.31 KJ/mol
The explanation is: When we have two values of k and T
k1=koT1\(e^{-\frac{E}{RT1}} \) and k2=koT2\(e^{-\frac{E}{RT2}} \)
Modifying it gives
ln(k1)=ln(ko)+ln(T1) – \((\frac{E}{R})\frac{1}{T1}\) and ln(k2)=ln(ko)+ln(T2) – \((\frac{E}{R})\frac{1}{T2} \)
On further simplification we get ln\((\frac{k1}{k2})\)=ln\((\frac{T1}{T2}) – \frac{E}{R}(\frac{1}{T1}-\frac{1}{T2}) \)
ln\((\frac{0.002}{0.08})\)=ln\((\frac{273}{353})-\frac{E}{8.314}(\frac{1}{273} – \frac{1}{353}) \)
E = 34.377 KJ/mol.