Right answer is (d) x^2/a^2 + y^2/b^2 = 1
The best I can explain: Let (x, y) be the co-ordinates of any point on the locus traced out by the moving point P. Then we shall have
x = a cos θ or x/a = cos θ and y = b sin θ or, y/b = sin θ
x^2/a^2 + y^2/b^2 = cos^2 θ + sin^2 θ or, x^2/a^2 + y^2/b^2 = 1
which is the required equation to the locus of P.