The correct choice is (a) \(-(\frac{\partial^2 u}{\partial x^2})_{i,j}\frac{\Delta x}{2}\)
Explanation: The Taylor series expansion of ui+1,j is
\(u_{i+1,j}=u_{i,j}+(\frac{\partial u}{\partial x})_{i,j} \Delta x+(\frac{\partial ^2 u}{\partial x^2})_{i,j} \frac{(\Delta x)^2}{2}+⋯\)
\(\frac{u_{i+1,j}-u_{i,j}}{\Delta x}=(\frac{\partial u}{\partial x})_{i,j}+(\frac{\partial^2 u}{\partial x^2})_{i,j}\frac{\Delta x}{2}+⋯\)
\((\frac{\partial u}{\partial x})_{i,j}=\frac{u_{i+1,j}-u_{i,j}}{\Delta x}-(\frac{\partial^2 u}{\partial x^2})_{i,j}\frac{\Delta x}{2}-…\)
The term –\((\frac{\partial^2 u}{\partial x^2})_{i,j}\frac{\Delta x}{2}-… \)is truncated. So, the first term of truncation error is –\((\frac{\partial^2 u}{\partial x^2})_{i,j}\frac{\Delta x}{2}\).