Correct choice is (a) \(\frac{3}{1-2z^{-1}}-\frac{4}{1-3z^{-1}}\)
The explanation is: Let us divide the given x(n) into x1(n)=3(2^n)u(n) and x2(n)= 4(3^n)u(n)
and x(n)=x1(n)-x2(n)
From the definition of z-transform X1(z)=\(\frac{3}{1-2z^{-1}}\) and X2(z)=\(\frac{4}{1-3z^{-1}}\)
So, from the linearity property of z-transform
X(z)=X1(z)-X2(z)
=> X(z)=\(\frac{3}{1-2z^{-1}}-\frac{4}{1-3z^{-1}}\).