The correct option is (d) \(\frac{1-z^{-N}}{1-z^{-1}}\)
Easiest explanation: We know that \(Z{u(n)}=\frac{1}{1-z^{-1}}\)
And by the time shifting property, we have Z{x(n-k)}=z^-k.Z{x(n)}
=>Z{u(n-N)}=\(z^{-N}.\frac{1}{1-z^{-1}}\)
=>Z{u(n)-u(n-N)}=\(\frac{1-z^{-N}}{1-z^{-1}}\).