The correct choice is (d) \(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\)
Best explanation: By Euler’s identity, the given signal x(n) can be written as
x(n) = sin(jω0n)u(n)=\(\frac{1}{2j}[e^{jω_0n} u(n)-e^{-jω_0n} u(n)]\)
Thus X(z)=\(\frac{1}{2j}[\frac{1}{1-e^{jω_0} z^{-1}}-\frac{1}{1-e^{-jω_0} z^{-1}}]\)
On simplification, we obtain
=> \(\frac{z^{-1} sin\omega_0}{1-2z^{-1} cos\omega_0+z^{-2}}\).