The correct choice is (c) ^-4⁄5
Easiest explanation: \(=lt_{x\rightarrow -5}\frac{tan^{-1}((x+5)(x+1))}{(x+5)(x+10)}\)
Now expand into Taylor Series for tan^-1(x)
\(=lt_{x\rightarrow -5}\frac{1}{(x+5)(x+10)}\times((x+5)(x+1)-\frac{(x+5)^3(x+2)^3}{3}+\frac{(x+5)^5(x+2)^5}{5}-..\infty)\)
\(=lt_{x\rightarrow -5}(\frac{(x+1)}{(x+10)}-\frac{(x+5)^2(x+2)^3}{3(x+10)}+\frac{(x+5)^4(x+2)^5}{5(x+10)}-…\infty)\)
\(=lt_{x\rightarrow -5}\frac{(-5)+1}{(-5)+10}\)
=\(-\frac{4}{5}\)