The correct answer is (c) 4
To elaborate: Expand into Mclaurin series
\(=lt_{x\rightarrow 0}(\frac{1}{x^4})\times(\frac{4x^3 tan^{-1}(x)}{1!}-\frac{16x^6 tan^{-1}(x)}{3!}+…\infty)\)
\(=lt_{x\rightarrow 0}(\frac{4 tan^{-1}(x)}{x1!}-\frac{16x^2 tan^{-1}(x)}{3!}+…\infty)\)
Neglecting higher order terms (which go to zero) we have
\(=lt_{x\rightarrow 0}(\frac{4 tan^{-1}(x)}{x!})=lt_{x\rightarrow 0}(\frac{4}{x})\times(\frac{x}{1}-\frac{x^3}{3}+..\infty)\)
\(=lt_{x\rightarrow 0}(\frac{4 tan^{-1}(x)}{x!})=lt_{x\rightarrow 0}(\frac{4}{1}-\frac{4x^2}{3}+…\infty)=4\)