Correct answer is (c) 2
For explanation I would say: First evaluate
\(=lt_{x\rightarrow -2}\frac{ln(1+\frac{(x+2)^2(x^2+1)}{x^3+3})}{x+2}\)
\(=lt_{x\rightarrow -2}(\frac{1}{x+2})\times(\frac{(x+2)^2(x^2+1)}{(x^3+3)}-\frac{(x+2)^3(x^3+1)^2}{2.(x^3+3)^2}+…\infty)\)
\(=lt_{x\rightarrow -2}\times(\frac{(x+2)^2(x^2+1)}{(x^3+3)}-\frac{(x+2)^3(x^3+1)^2}{2.(x^3+3)^2}+…\infty)\)
We hence the form for the totle limit as
\(lt_{x\rightarrow a}\frac{sin(f(x))}{g(x)}\)=1
Where f(x)→0 : g(x)→0 as x→a
This is true for the above problem
Thus, we can deduce the limit as
= 1
Hence, 2 is the right answer.