Right answer is (a) 24,025 mm^2
Explanation: Let x be the length of the rectangle and y be the width of the rectangle. Then, Area A is,
A=x*y …………………………………………………. (1)
Given: Perimeter of the rectangle is 620 mm. Therefore,
P=2(x+y)
620=2(x+y)
x+y=310
y=310-x
We can now substitute the value of y in (1)
A=x*(310-x)
A=310x-x^2
To find maximum value we need derivative of A,
dA/dx=310-2x
To find maximum value, \(\frac{dA}{dx}=0 \)
310-2x=0
2x=310
x=155 mm
Therefore, when the value of x=155 mm and the value of y=310-155=155 mm, the area of the rectangle is maximum, i.e., A=155*155=24,025 mm^2