Correct choice is (a) 26,406.25 mm^2
The explanation is: Let x be the length of the rectangle and y be the width of the rectangle. Then, Area A is,
A=x*y …………………………………………………. (1)
Given: Perimeter of the rectangle is 620 mm. Therefore,
P=2(x+y)
650=2(x+y)
x+y=325
y=325-x
We can now substitute the value of y in (1)
A=x*(325-x)
A=325x-x^2
To find maximum value we need derivative of A,
\(\frac{dA}{dx}=325-2x\)
To find maximum value, \(\frac{dA}{dx}=0\)
325-2x=0
2x=325
x=162.5 mm
Therefore, when the value of x=162.5 mm and the value of y=325-162.5=162.5 mm, the area of the rectangle is maximum, i.e., A=162.5*162.5=26,406.25 mm^2