Correct answer is (a) 15,625 mm^2
Best explanation: Let x be the length of the rectangle and y be the width of the rectangle. Then, Area A is,
A=x*y …………………………………………………. (1)
Given: Perimeter of the rectangle is 620 mm. Therefore,
P=2(x+y)
500=2(x+y)
x+y=250
y=250-x
We can now substitute the value of y in (1)
A=x*(250-x)
A=250x-x^2
To find maximum value we need derivative of A,
\(\frac{dA}{dx}=250-2x\)
To find maximum value, \(\frac{dA}{dx}=0\)
250-2x=0
2x=250
x=125 mm
Therefore, when the value of x=125 mm and the value of y=250-125=125 mm, the area of the rectangle is maximum, i.e., A=125*125=15,625 mm^2