Correct choice is (b) >=2
For explanation: \(\lim_{x\rightarrow 0}\frac{(cos(x)-1)(cos(x)-e^x)}{x^n}=(0/0)\)
By L’Hospital Rule two times we get
=>\(\lim_{x\rightarrow 0}\frac{sin(2x)+e^x(cos(x)+sin(x))}{n(n-1)x^{n-2}}\)
Hence, limit have non zero limit, if n ≠ 0 and (n-1) ≠ 0 and (n-2) >= 0 means n >= 2.