Right choice is (c) ^1⁄2
The explanation is: \(y=\lim_{x\rightarrow\infty}\left [\frac{x-1}{x-2} \right ]^x\)
\(ln y=\lim_{x\rightarrow\infty}xln\left [\frac{x-1}{x-2} \right ]\)
=>\(\lim_{x\rightarrow\infty}\frac{\left [\frac{x-1}{x-2} \right ]}{\frac{1}{x}}\)
By putting 1=1/y, we get
=>\(\lim_{y\rightarrow 0}\frac{ln\left [\frac{x-1}{x-2} \right ]}{y}=[ln(1/2)]/0\) (i.e indeterminate)
Hence by applying L’Hospital rule
=>\(\lim_{y\rightarrow 0}\frac{ln\left [\frac{x-1}{x-2} \right ]}{y}=\lim_{y\rightarrow 0}\frac{\frac{2-y-1+y}{(2-y)^2}}{\frac{1-y}{2-y}}=\lim_{y\rightarrow 0}\frac{\frac{1}{2-y}}{\frac{1-y}{1}}=\lim_{y\rightarrow 0}(\frac{1}{(2-y)(1-y)})\)=1/2