The correct answer is (c) √^π⁄2
Easiest explanation: Using the Gauss definition of the Gamma function we have
\(\tau(x)=lt_{p\rightarrow\infty}\frac{p^x.p!}{x.(x+1)…(x+p)}\)
Where τ(x) is the Gamma function Using formula
\(\tau(x) \times \tau(1-x)=\frac{\pi.x}{sin(\pi.x)}\)
put x=1/2 to get
\((\tau(\frac{1}{2}))^2=\frac{\pi}{2.sin(\frac{\pi}{2})}=\frac{\pi}{2}\)
\(\tau(\frac{1}{2})=\sqrt{\frac{\pi}{2}}\)