Right option is (a) e
Best explanation: \(\Rightarrow \lim_{x\rightarrow 0}(1+cot(x))^{sin(x)}=\lim_{x\rightarrow 0}(1+\frac{cos(x)}{sin(x)})^{sin(x)}\)
\(=\lim_{x\rightarrow 0}(1+\frac{cos(x)}{sin(x)})^{\frac{sin(x)}{cos(x)}cos(x)}\)
\(\Rightarrow \lim_{x\rightarrow 0}\left [(1+\frac{cos(x)}{sin(x)})^{\frac{sin(x}{cos(x)}}\right ]^{cos(x)} \)
\(\Rightarrow\) Put cos(x)/sin(x)=t gives
\(\Rightarrow \lim_{t\rightarrow 0}\left [(1+t)^{\frac{1}{t}} \right ] ^{\lim_{x\rightarrow 0}cos(x)}\)
=>e^1
=>e