Correct answer is (a) -1.741
To elaborate: Given f(x) = ln(Cos(x)), f(0) = 0
Differentiating it f'(x) = – tan(x), f'(0) = 0
Again \(f^{”}(x)=-sec^2(x),f^{”}(0)=-1\)
And \(f^{”’}(x)=-2 sec(x) \,sec(x) \,tan(x)=-2f^{”}(x)f'(x)\), hence f”(0)=0
f””(x)=-2(f”'(x) f'(x)+(f”(x))^2), hence f””(0)=-2
Now, by mclaurins’s series
f(x)=ln(Cos(x))=\(0+0-x^2/2!+0-x^4/12+..\)
Therefore, f(x)=\(-x^2/2!-x^4/12+…\)
Hence,
ln(cos(π/2))=-1.741