Right choice is (b) ln(4)
The best I can explain: Using limit of sum we have
=\(lt_{n\rightarrow\infty}(\frac{1}{n})\times(ln(1+0)+ln(1+\frac{1}{n})+ln(1+\frac{2}{n})+…+ln(1+\frac{(n-1)}{n}))\)
=\(\int_0^1 ln(1+x)dr=[(x+1)(ln(x+1)-1)]_0^1\)
=(2ln(2)-1)-(ln(1)-1)=2ln(2)
=ln(4)