Correct choice is (a) 4!
To explain I would say: \(=lt_{p\rightarrow\infty}\frac{1.2.3.4}{1.2.3.4}\times \frac{p^5.p!}{5.6…(5+p)}\)
\(=lt_{p\rightarrow\infty}\frac{4!.p^5.p!}{(p+5)!}\)
\(=lt_{p\rightarrow\infty}\frac{4!.p^5}{(p+5)(p+4)(p+3)(p+2)(p+1)}\)
\(=lt_{p\rightarrow\infty}(4!)\times\frac{p^5}{(p+5)(p+4)(p+3)(p+2)(p+1)}=4!\times(1)\)
= 4!