The correct choice is (c) -.5
For explanation: \(\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 1}\frac{x^2-3x+2}{x^3-x^2+x-1}\)=(1-3+2)/(1-1+1-1)=0/0
Hence this gives indeterminent forms hence by L’Hospital Rule
\(\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=\lim_{x\rightarrow 1}\frac{f'(x)}{g'(x)}=\lim_{x\rightarrow 1}\frac{2x-3}{3x^2-2x+1}=\frac{2-3}{3-2+1}=-\frac{1}{2}\)
Hence
\(\lim_{x\rightarrow 1}\frac{f(x)}{g(x)}=-\frac{1}{2}\)