Right option is (b) π(1-cos 4)
To explain: Using Polar variable transformation x = r cos θ & y=r sin θ, r varies from 0 to 2 & θ varies from 0 to 2π because radius of circle i.e r=2 & centered at origin
\(\int\int_P f(r cos θ,r sin θ )rdr \,dθ = \int\int_R sin (x^2+y^2) \,dx \,dy = \int_0^2π \int_0^2 r sin r^2 \,dr \,dθ\)
Using substitution t=r^2 integral changes to \(\int_0^{2π} \int_0^4 0.5 \,sint \,dt \,dθ\)
\(\int_0^{2π} 0.5\big[-cost\big]_0^4 dθ = \int_0^{2π} 0.5(1-cos4) dθ = π(1-cos 4)\).