Right option is (d) ∭R^* f(r,θ,∅) r^2 sinθ dr dθ d∅
For explanation I would say: From the figure we can write x = r sin θ cos ∅, y = r sin θ sin ∅, z = r cos θ
now we know that during a change of variables f(x,y,z) is replaced by \(f(ρ,∅,z)*J\left(\frac{x,y,z}{ρ,∅,z}\right)\) with limits in functions of x,y,z to functions of r,θ,∅ respectively
\(J\left(\frac{x,y,z}{ρ,∅,z}\right) =\begin{vmatrix}
\frac{∂x}{∂r} &\frac{∂x}{∂θ} &\frac{∂x}{∂∅}\\
\frac{∂y}{∂r} &\frac{∂y}{∂θ}& \frac{∂y}{∂∅}\\
\frac{∂z}{∂r} &\frac{∂z}{∂θ} &\frac{∂z}{∂∅}\\
\end{vmatrix} = \begin{vmatrix}
sin θ cos ∅ &r cos θ cos ∅ &-r sin θ sin ∅\\
sin θ sin ∅ &r cos θ sin ∅ &r sin θ cos ∅\\
cos θ& -r sin θ &0\\
\end{vmatrix}\)
= sin θ cos ∅(r^2 sin^2 θ cos∅) + r cos θ cos ∅(r sin θ cos ∅ cos θ) – r sin θ sin ∅
= (-r sin^2 θ sin∅-r cos^2 θ sin∅)……on solving we get r^2 sinθ
thus ∭R f(x,y,z)dx dy dz = ∭R^* f(r,θ,∅)r^2 sinθ dr dθ d∅ where R^* is the new region.