Right answer is (b) ∬P f(r cosθ, r sinθ)rdr dθ
To explain I would say: ∬R f(x,y)dx dy when converting this into polar form we take x = r cos θ
y=r sin θ as change of variables from
\(\int\int_R f(x,y) \,dx \,dy = \int\int_S f(g(u,v),h(u,v)) \frac{∂(x,y)}{∂(u,v)} \,du \,dv \) where u=r & v=θ
thus \(\frac{∂(x,y)}{∂(r,θ)} =\begin{vmatrix}
\frac{∂x}{∂r} &\frac{∂x}{∂θ}\\
\frac{∂y}{∂r} &\frac{∂y}{∂θ}\\
\end{vmatrix} = \begin{vmatrix}
cosθ &-r sinθ\\
sinθ & rcosθ\\
\end{vmatrix} = r(cos^2 θ + sin^2 θ) = r\)
substituting we get ∬P f(r cos θ,r sin θ)rdr dθ.