Right choice is (d) \(\frac{\sqrt{3}}{8}π\)
The best I can explain: Given: \(V = \int_0^{\frac{π}{2}}∫_0^{\frac{π}{3}}∫_0^1r cos∅ \,dr \,d∅ \,dθ\)
\(V = \int_0^{\frac{π}{2}}∫_0^{\frac{π}{3}}(\frac{r^2}{2})_0^1cos∅ \,d∅ \,dθ\)
\(V = \frac{1}{2} \int_0^{\frac{π}{2}}(sin∅)_0^{\frac{π}{3}}d∅ \,dθ\)
\(V = \frac{1}{2}×\frac{\sqrt{3}}{2}\int_0^{\frac{π}{2}}dθ\)
\(V = \frac{1}{2}×\frac{\sqrt{3}}{2}×\frac{π}{2}\)
\(V = \frac{\sqrt{3}}{8}π \)