The correct answer is (d) \(\frac{√3}{4} π\)
For explanation: Given: \(V = ∫_0^2π∫_0^\frac{π}{3}∫_0^1 r cos∅ \,dr \,d∅ \,dθ.\)
\( V = ∫_0^2π∫_0^{\frac{π}{3}}(\frac{r^2}{2})_0^1 cos∅\, d∅\, dθ\)
\( V = \frac{1}{2} ∫_0^{2π}(sin∅)_0^\frac{π}{3} d∅ \,dθ\)
\(V = \frac{1}{2}×\frac{√3}{2} ∫_0^2π dθ\)
\( V = \frac{1}{2}×\frac{√3}{2} ×2π\)
\( V = \frac{√3}{2} π \)