The correct option is (d) 0
The explanation is: \(\int_{θ=0}^{\frac{π}{2}} \int_{r=0}^{a sinθ} \int_{z=0}^r r \,dr \,dθ \,dz = \int_{θ=0}^{\frac{π}{2}} \int_{r=0}^{a sinθ} r \big[z\big]_0^r \,dr \,dθ \)
\(= \int_{θ=0}^{\frac{π}{2}} \int_{r=0}^{a sinθ} r^2 \,dr \,dθ\)
\(\int_{θ=0}^{\frac{π}{2}}\big[\frac{r^3}{3}\big]_0^{sinθ} \,dθ = \int_0^{\frac{π}{2}} \frac{sin^3 θ}{3} \,dθ = \int_0^{\frac{π}{2}} \frac{3 sinθ-sin3θ}{12} \,dθ = \Big[\frac{-3 cosθ + 3 cos3θ}{12}\Big]_0^{\frac{π}{2}}=0\).