Correct option is (a) \(\frac{-e(x-1)(y-\frac{π}{4})}{\sqrt{2}}\)
Best explanation: Taylor’s series expansion is given by
\(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
Thus fifth term is given by \(2 \frac{(x-a)(x-b)}{2!} f_{xy} (a,b)\)..(1) where a=1, b=π/4 & \(f_{xy}=\frac{∂}{∂x}(\frac{∂f(x,y)}{∂x}) = \frac{∂}{∂x}(\frac{∂e^x cosy}{∂y}) =- e^x \,siny \) at (1, \(\frac{π}{4}), f_{xy}=\frac{-e}{\sqrt{2}}\) substituting in (1)
We get fifth term as \(2 \frac{(x-1)(x-π/4)}{2!} \frac{-e}{\sqrt{2}} = \frac{-e(x-1)(y-\frac{π}{4})}{\sqrt{2}}\).