The correct answer is (a) \(\frac{3π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{2} + \frac{(y-1)^2}{2!} \frac{1}{2}\)
The best explanation: We can expand the given function according to Taylor’s theorem
\(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
Given a=-1 & b=1, f(-1,1)=tan^-1-1 = \(\frac{3π}{4}\)
\(f_x = \frac{-y}{x^2+y^2} \,at\, (-1,1) = \frac{-1}{2}\)
\(f_y = \frac{x}{x^2+y^2} \,at\, (-1,1) = \frac{-1}{2}\)
\(f_{xy} = \frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}\) at (-1,1)=0
\(f_{xx} = \frac{2yx}{(x^2+y^2)^2} \,at\, (-1,1)=\frac{-2}{4} = \frac{-1}{2}\)
\(f_{yy} = \frac{-2yx}{(x^2+y^2)^2} \,at\, (-1,1)=\frac{2}{4} = \frac{1}{2}\) thus the series is given by
\(\frac{3π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{2} + \frac{(y-1)^2}{2!} \frac{1}{2}\).