Correct choice is (c) \(\frac{-e^2x}{2} \)
To elaborate: wkt \(J(\frac{u,v}{x,y}) = \frac{∂(u,v)}{∂(x,y)} = \begin{vmatrix}
\frac{∂u}{∂x} & \frac{∂u}{∂y}\\
\frac{∂v}{∂x} & \frac{∂v}{∂y}\\
\end{vmatrix}\)
But we have to find u and v first using given equation
u+v=e^x cos y………(1)
u-v=e^x sin y……..(2)
solving (1)&(2)
we get u=\(\frac{e^x}{2} \)(cosy+siny)
v=\(\frac{e^x}{2} \)(cosy-siny)
\(\frac{∂u}{∂x} = \frac{e^x}{2}(cosy+siny) \)
\(\frac{∂v}{∂x} = \frac{e^x}{2}(cosy-siny) \)
\(\frac{∂u}{∂y} = \frac{e^x}{2}(cosy-siny) \)
\(\frac{∂v}{∂y} = \frac{e^x}{2}(-cosy-siny) \)
\(J(\frac{u,v}{x,y}) = \begin{vmatrix}
\frac{e^x}{2}(cosy+siny) & \frac{e^x}{2}(cosy-siny)\\
\frac{e^x}{2}(cosy-siny) & \frac{e^x}{2}(-cosy-siny)\\
\end{vmatrix}\)
\((\frac{e^x}{2})(\frac{e^x}{2})\){-(cosy+siny)^2 -(cosy-siny)^2}…….(expanding & solving by taking cos^2 y+sin^2 y=1)
=\(\frac{-e^2x}{2} \).