The correct answer is (b) \(\frac{x^2-y^2}{x^2+y^2}\)
The explanation is: \(\frac{∂^2 u}{∂x∂y}=\frac{∂}{∂x} \frac{∂u}{∂y}\)
\(\frac{∂u}{∂y}=-2y \,Tan^{-1} (\frac{x}{y})+\frac{x^3}{x^2+y^2}+\frac{xy^2}{x^2+y^2}\)
\(\frac{∂u}{∂y}=-2y \,Tan^{-1} (\frac{x}{y})+x\)
Now,
\(\frac{∂^2 u}{∂x∂y}=\frac{∂}{∂x} \frac{∂u}{∂y}= -\frac{2y}{1+\frac{x^2}{y^2}} (\frac{1}{y})+1=\frac{x^2-y^2}{x^2+y^2}\)