Correct option is (d) x [ytan^(-1) (y)- ^1⁄2 ln(1+y^2)]
Explanation: Add constant automatically
Given, \(\int\int \frac{x}{x^2+y^2} \,dxdy\)
\(\int x \int \frac{1}{x^2+y^2} \,dydx=\int x \frac{1}{x} tan^{-1}(\frac{y}{x}) \,dy=\int tan^{-1}(\frac{y}{x}) \,dy\)
\(\int tan^{-1}(\frac{y}{x})\,dy = x\int tan^{-1}(t)\,dt\)
Putting, x = tan(z),
We get, dz = sec^2(z)dz,
x∫ zsec^2 (z)dz
By integration by parts,
x ∫ zsec^2 (z)dz=x[ztan(z)-log(sec(z))]= x[ytan^(-1) (y)- ^1⁄2 ln(1+y^2)].