Correct choice is (b) \(\frac{1}{8} (x+\frac{1}{2})tan^{-1} (x+\frac{1}{2})-\frac{1}{16} ln(1+(x+\frac{1}{2})^2)\)
Best explanation: Add constant automatically
Given,\(\int \frac{1}{16x^2+16x+10} dx=\frac{1}{2}\int \frac{1}{4x^2+4x+5} dx\)
=\(\int \frac{1}{8(x^2+x+5/4+1/4+1/4)} dx\)
=\(\int \frac{1}{8[(x+1/2)^2+1^2]}dx=\frac{1}{8} tan^{-1}(x+1/2)\)
Hence, \(\frac{1}{8} \int tan^{-1}(x+\frac{1}{2})dx\)
Now, Putting, x+1/2 = tan(y),
We get, dx = sec^2(y)dy,
=1/8 \(\int ysec^2 (y)dy\)
By integration by parts,
ytan(y)-log(sec(y))=\(\frac{1}{8} (x+\frac{1}{2})tan^{-1} (x+\frac{1}{2})-\frac{1}{16} ln(1+(x+\frac{1}{2})^2)\)