Correct answer is (b) ^a^2⁄2 + 5a – 4ln(a) – ^11⁄2
To explain: Add constant automatically
Given,
\(f(x) = \frac{(2x^3+5x^2-4)}{x^2}\)
Integrating it we get, F(x) = ^x^2⁄2 + 5x – 4ln(x)
Hence, area under, x = 1 to a, is
F(a) – F(1) = ^a^2⁄2 + 5a – 4ln(a) – ^1⁄2 – 5 = ^a^2⁄2 + 5a – 4ln(a) – ^11⁄2.