The correct answer is (a) \(\frac{8s+16}{(s^2+2s-12)^2}\)
The best explanation: In the given question,
L(t e^-2t sinh(4t))
L(sinh(4t))=\(\frac{4}{s^2-16}\)
By effect of multiplication of t
L(t×sinh(4t))=\((-1) \frac{d}{ds} \frac{4}{s^2-16}\)
L(t×sinh(4t))=\(\frac{8s}{(s^2-16)^2}\)
By First shifting property
L(t e^-2t sinh(4t))=\(\frac{8(s+2)}{((s+2)^2-16)^2} = \frac{8s+16}{(s^2+2s-12)^2}\).