The correct answer is (a) \(\frac{1}{2s} \left [\frac{3}{s^2+9}-\frac{1}{s^2+1}\right ]\)
To explain: In the given question,
L(sin(t) cos(2t))=\(\frac{1}{2} L(sin(3t)-sin(t))\)
=\(\frac{1}{2} \left [\frac{3}{s^2+9}-\frac{1}{s^2+1}\right ]\)
By Laplace Transformation of an integral,
\(L(\int_{0}^{t}sin(u) cos(2u)du)=\frac{1}{2s} \left [\frac{3}{s^2+9}-\frac{1}{s^2+1}\right ]\)