Right option is (d) \(\frac{-1}{2}\)
The best explanation: In the given question,
L(e^-3t cos(2t)cos(3t))
L(cos(2t) cos(3t))
=\(\frac{1}{2} L(cos(5t)+cos(t))\)
=\(\frac{1}{2} \left (\frac{s}{(s^2+25)}\right )+\frac{1}{2} \left (\frac{s}{(s^2+1)}\right )\)
By effect of multiplication by t
L(t×cos(2t) cos(3t))=\((-1)×\frac{1}{2}×\frac{d}{ds} \frac{1}{2} \left (\frac{s}{(s^2+25)}\right )+\frac{1}{2} \left (\frac{s}{(s^2+1)}\right )\)
=\(\frac{-1}{2} \left [\frac{25-s^2}{(s^2+25)^2} + \frac{(1-s^2)}{(s^2+1)^2}\right]\)
By the effect of first shifting,
L(te^-3t cos(2t)cos(3t))=\(\frac{-1}{2} \left [\frac{25-(s+3)^2}{((s+3)^2+25)^2} + \frac{1-(s+3)^2}{((s+3)^2+1)^2}\right ]\)
k=\(\frac{-1}{2}\).