The correct answer is (a) \(\begin{bmatrix}0.33 & 0.67 & -0.67\\ -0.67 & 0.67 & 0.33\\ 0.67 & 0.33 & 0.67\end{bmatrix} \)
The explanation is: Out of the given options, \(\begin{bmatrix}0.33 & 0.67 & -0.67\\ -0.67 & 0.67 & 0.33\\ 0.67 & 0.33 & 0.67\end{bmatrix} \) satisfies the condition for orthogonality, i.e. AA^T = I
\(\begin{bmatrix}0.33 & 0.67 & -0.67\\ -0.67 & 0.67 & 0.33\\ 0.67 & 0.33 & 0.67\end{bmatrix}
\begin{bmatrix}0.33 & -0.67 & 0.67 \\ 0.67 & 0.67 & 0.33\\-0.67 & 0.33 & 0.67\end{bmatrix}= \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} \)
Since \(\begin{bmatrix}0.33 & -0.67 & 0.67\\ 0.67 & 0.67 & 0.33\\ -0.67 & 0.33 & 0.67\end{bmatrix} \)is the transpose of A, it is also orthogonal.
Coming to \(\begin{bmatrix}cosx & sinx\\ -sin x &cosx\end{bmatrix}, \)
\(\begin{bmatrix}cosx & sinx\\-sinx & cosx\end{bmatrix} \begin{bmatrix}cosx & -sinx \\ sinx & cosx\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} \)
The remaining option \(\begin{bmatrix}cosx & sinx\\ -sinx & -cosx\end{bmatrix}, \)which does not satisfy the condition for orthogonality.