The correct answer is (b) True
Easy explanation: To prove the above statement, let us consider an example,
A = \(\begin{bmatrix}1 & 3 & 8\\ 3 & 0 & 5 \\ 8 & 5 & 7 \end{bmatrix} \)
Therefore, A + A =\(\begin{bmatrix}1 & 3 & 8 \\3 & 0 & 5 \\8 & 5 & 7 \end{bmatrix}+ \begin{bmatrix}1 & 3 & 8\\ 3 & 0 & 5\\ 8 & 5 & 7 \end{bmatrix} = \begin{bmatrix}2 & 6 & 16\\ 6 & 0 & 10\\ 16 & 10 & 14 \end{bmatrix} \) which is also a skew-symmetric matrix.