Right choice is (a) 2.58 kms^-1
The explanation is: Let R be radius of the earth and r be the variable distance from Newton’s law \(a = \frac{dv}{dt} = \frac{k}{r^2}\) when r=R a=-g due to retardation of a body -gR^2=k
substituting the value of k back we get \(\frac{dv}{dt} = \frac{-gR^2}{r^2} = \frac{dr}{dt} \frac{dv}{dr} = v \frac{dv}{dr}\) solving DE for v
we get \(\int v \,dv = \int \frac{-gR^2}{r^2} dr + c \rightarrow v^2 = \frac{2gR^2}{r} + C\) to find c we use at r=R
v=ve thus we get \(v_e^2 – \frac{2gR^2}{R} = C\)… where 2c=C=constant substituting value of c we get \(v^2=\frac{2gR^2}{r} + v_e^2 – 2gR\)…..if r>>R \(\frac{2gR^2}{r} = 0\) and particle to get escape from earth v≥0 –> ve^2 – 2gR≥0 –> \(v_e=\sqrt{2gR}\) to find ve
from the moon g becomes \(\frac{g}{6}\), R=2000km=2×10^6 m, g=10ms^-2
therefore \(v_e = \sqrt{2*\frac{10}{6}(2×10^6)} = 2.58kms^{-1}.\).