Correct option is (c) x^2+y^2-2a^2 logx-k = 0
For explanation I would say: \(\frac{x^2}{a^2} + \frac{y^2}{b^2+k} = 1\)…….(1) differentiating w.r.t x we have \(\frac{2x}{a^2} + \frac{2yy’}{b^2+k} = 0 \,where\, y’ = \frac{dy}{dx}\)
i.e \(\frac{x^2}{a^2} = \frac{-yy’}{b^2+k} …..(2) \,from\, (1)\, \frac{x^2}{a^2} – 1 = \frac{-y^2}{b^2+k} \rightarrow \frac{x^2-a^2}{a^2} = \frac{-y^2}{b^2+k}\)…..(3) divide (2)&(3)
we get \(\frac{x}{x^2-a^2} = \frac{yy’}{y^2} \rightarrow \frac{x}{x^2-a^2} = \frac{y’}{y}\) now \(y’=\frac{dy}{dx}\) is replaced by \(-\frac{dx}{dy} \,i.e\, \frac{x}{x^2-a^2} = \frac{1}{y}(-\frac{dx}{dy})\)
separating the variable we get \(y \,dy = -\frac{(x^2-a^2)}{x} dx\) integrating this equation
\(\int y \,dy = \int-x \,dx + \int a^2 \frac{1}{x} \,dx + c \rightarrow \frac{y^2}{2} = \frac{-x^2}{2} + a^2 log \,x + c\)
–> x^2+y^2-2a^2 logx – 2c=0 or x^2+y^2-2a^2 logx-k=0 where k=2c is the required orthogonal trajectory.